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The severe errors associated with the computation of derivatives of 
functions approximated by Chebyshev polynomials are investigated. 
When using standard Chebyshev transform methods, it is found that 
the maximum error in the computed first derivative grows as N2, where 
N + 1 is the number of Chebyshev polynomials used to approximate the 
function. The source of the error is found to be magnification of 
roundoff error by the recursion equation, which links coefficients of a 
function to those of its derivative. Tight coupling between coefficients 
enables propagation of errors from high-frequency to low-frequency 
modes. Matrix multiplication techniques exhibit errors of the same 
order of magnitude. However, standard methods for computing the 
matrix elements are shown to be ill-conditioned and to magnify the dif- 
ferentiation errors by an additional factor of N2. For both the transform 
and matrix methods, the errors are found to be most severe near the 
boundaries of the domain, where they grow as (1 -x2) -‘I* as x 
approaches k 1. Comparisons are made with the errors associated with 
derivatives of functions approximated by Fourier series, in which case 
it is reported that the errors only grow linearly with N and are evenly 
distributed throughout the domain. A method for reducing the error is 
discussed. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

Recent years have seen widespread use of pseudo-spectral 
methods for the solution of partial differential equations. 
The pseudo-spectral technique represents a function by a 
generalized Fourier expansion. Derivatives are obtained by 
operations in transform space, while nonlinear terms are 
calculated in physical space. Basis functions are sines and 
cosines for problems with periodic boundary conditions, 
while Chebyshev polynomials are frequently used for non- 
periodic problems. 

The principal advantage of spectral methods is their 
promise of “spectral accuracy” [ 11; that is, if the function 
being represented is infinitely smooth, then the kth 
coeffkient of the expansion decays faster than any inverse 
power of k. Consequently very good approximations to the 
function may be obtained with relatively few terms. 

* Current address: Department of Aeronautics and Astronautics, Room 
33-214, Massachusetts Institute of Technology, Cambridge, MA 02139. 

Derivatives, too, are obtained with spectral accuracy if 
infinite precision arithmetic is used. In this paper we 
examine some diffkulties that arise in computing derivatives 
using Chebyshev polynomials on a finite precision com- 
puter. 

A Chebyshev polynomial of degree k on [ - 1, l] is 
defined by 

T,(x) = cos k<, 4 = arc cos x. 

The polynomials obey the recurrence relation 

(1) 

T,(x) = 2xT,p l(x) - Tkp2(x) for k>2. (2) 

Polynomials are orthogonal with weight w(x) = 
(1 -x2)--1/2, 

s 
I 

T,(x)T~(x)w(x)dx=~c& (3) 
-1 

where cO = 2 and ck = 1 for k > 0. 
The Chebyshev expansion of a function u(x), x E [ - 1, 1 ] 

is 

u(x) = f a,T,(x), 
k=O 

(4) 

where the coeffkients are given by the inner product 

s 

1 

ak = u(x) Tk(X) w(x) dx. (5) 
-1 

In practice the expansion is approximated by the first N + 1 
terms and the approximation is required to equal u at N + 1 
collocation points. We shall concentrate on the popular 
Gauss-Lobatto points: 

W xj = cos -, 
N 

06 j<N. (6) 
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These collocation points have the particular advantage of 
allowing the integrals yielding the Chebyshev coefficients uk 
(Eq. (5)) to be evaluated in O(Nlog N) operations by a fast 
Fourier transform (FFT). 

Term by term differentiation of Eq. (4) gives a formal 
representation of the derivative of U, 

cc 

u’(x) = 1 bkTk(X), 
k=O 

where 

bk=l f pa,. 
‘-k p=k+l 

p+k odd 

Manipulations with trigonometric identities yield the 
following central recurrence relation in Chebyshev space: 

c,b,=b,+,+2(k+l)a,+,. (9) 

Since, when differentiating a polynomial of degree N, bk = 0 
for k 3 N the non-zero coefficients, b,, are computed for 
decreasing k in 2N multiplications or additions. Applying 
the recurrence twice yields the coefficients, dkr for a 
Chebyshev expansion of the second derivative of u. 

Alternative procedures for calculating derivatives, which 
avoid transformations to and from Chebyshev space, 
require instead a matrix multiplication. These “collocation 
matrix” methods are asymptotically less efficient than the 
Chebyshev transform method (needing 0(N2) operations), 
but are common for small problems. We discuss these 
methods in Section 4. 

The largest current codes (see, for example, [2]) use 200 
to 500 Chebyshev modes and this number is expected to rise 
as more complex problems are tackled. In this paper we 
examine the character and sources of errors incurred when 
calculating derivatives of functions represented by a 
Chebyshev polynomial expansion on a machine with finite 
precision. Briefly, we find that the error in the first derivative 
grows like N2 for (even moderately) large N. 

We draw attention to two related works. Trefethen and 
Trummer [3] discuss the behavior of the eigenvalues of 
collocation matrices for Fourier, Legendre, and Chebyshev 
polynomials. Their apparent growth like N2 (when 
calculated with finite precision arithmetic) accounts for 
anomalous timestep restrictions in numerical solutions of 
boundary value problems. Greengard [4] also noticed the 
problem examined in this paper and discusses Chebyshev 
spectral methods applied to integral equations. 

The remainder of the paper is organized as follows. In the 
following section we give details of the manifestation of 
errors in the computed derivatives. In Section 3, wp ,solate 
the sources of the error to roundoff error and strong 

coupling between Chebyshev modes. Comparison with con- 
ventional Fourier series helps elucidate the problem, and a 
technique for alleviation of the error is discussed. Differen- 
tiation by matrix methods is examined in Section 4. Here, 
similar problems exist, but a careless computation of the 
matrix elements is shown to lead to O(N4) errors in the first 
derivative. Finally, in Section 5, we make some general 
concluding remarks. 

2. APPEARANCE OF ERRORS IN COMPUTED 
DERIVATIVES 

We estimate the errors incurred in calculating by the 
Chebyshev polynomial approximation by comparing 
numerically calculated derivatives with the known 
derivatives of an example function, u(x). Two approxima- 
tions are being made here; one in truncating the expansion 
(Eq. (4)) and another by making an imperfect numerical 
calculation, i.e., one affected by roundoff error. We shall 
only be concerned with the fidelity of a numerical calcula- 
tion, always retaining sufficient terms in the expansion to 
adequately represent u(x). Let p denote the numerical 
approximation tof: Two measures are used to characterize 
the error in a numerical approximation, c(x), to u(x): the 
maximum or L, -error, 

Em = -y$ 1 I@) -4x)1, (10) . . 

and the root mean square or L,-error, 

E, = j’ 
-1 

(i(x) - u(x))’ dx]“2, 

We focus first on the recursion technique. Chebyshev 
coefficients, ak, of the example function were found by FFT, 
from which the coefficients, b, and dk, for Chebyshev 
expansions of first and second derivatives were computed by 
successive applications of the recursion equation (9). 
Inverse FFTs recover the approximations to u’(x) and 
u”(x). Figure 1 shows the growth of the maximum and 
root-mean-square errors, for both the first and second 
derivatives, as a function of the number of collocation 
points N. The pair of lines at the bottom of the graph 
indicate the L, and L, errors accrued by performing only 
the forward and backward transforms without any interven- 
ting derivative calculations. The computations here (and 
in all subsequent results unless explicitly noted) were 
performed using IEEE 64-bit floating point arithmetic on a 
Silicon Graphics Power Series workstation. The example 
function used here, and throughout this paper, is given by 

u(x) = 
sin 8(x+ 1) 
(x + 1.1)3’2 (12) 
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FIG. 1. Maximum (solid line) and rms (dotted lines) errors for the 
first and second derivatives of the example function u(x) = sin(8(x + I))/ 
(x + l.l)3’2. The derivatives are calculated using standard transform tech- 
niques. The lower two lines show the maximum and rms errors of the 
Chebyshev transform alone. 

When N is small there are insufficient Chebyshev modes 
to adequately resolve U, but the more serious problem and 
the subject of this paper, is the quadratic growth of the L, - 
error in the first derivative for large N. The L,-error grows 
rather more slowly, but still faster than N. The severity of 
the problem is highlighted by recognizing that the maxi- 
mum error in the second derivative is of the same order as 
the function itself when N = 4096. The minimum in each 
curve in Fig. 1 is thus determined by competition between 
increasing resolution of u and growing errors resulting from 
the calculation of the Chebyshev coefficients of U’ and u”. 
Clearly, these errors render the recursion technique useless 
as N becomes large. 

The computed spectrum of Chebyshev coefficients for the 
example function is shown in Fig. 2. The decay of the coef- 
ficients, ak, is geometric: uk cc exp( -yN) (with y dictated 
by the singularity at x = - 1.1). The function is fully 
resolved to machine precision by about 100 Chebyshev 
modes. As we shall see, it is the presence of this roundoff 
“plateau” in the uk due to the finite precision of the com- 
puter which provides the seed for the errors observed in 
Fig. 1. The magnitude of error due to roundoff effects intro- 
duced by the forward Chebyshev transform was estimated 
by examining the magnitude of the coefficients at the 
high-frequency end of the ak spectrum. As indicated by 
Fig. 2, this is approximately lo- I6 and was found to be 
independent of N. 

We must emphasize that these results are essentially inde- 
pendent of the complexity of the example function used. 
This is demonstrated in Fig. 3 which shows the L, and L, 

Coelfiiient 

FIG. 2. Spectrum of the Chebyshev modes for the example function 
u(x) = sin(8(x + l))/(x + 1.1)3!2. The approximately constant magnitude of 
the ak for high values of k represents the machine precision (found to be 
independent of N). 

errors for the first derivative of both the original function, 
U(X) (Eq. (12), and a more complicated function, 

u(x) = 
sin8(x+l)+sin400(x+l) 

(x + 1.1)3’2 . (13) 

For comparison purposes, the errors in U’ and II’ have 
been normalized by their respective root-mean-square 
amplitudes. Because v(x) requires more modes for complete 
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FIG. 3. Maximum (solid line) and rms (dotted line) errors for the first 
derivative for the original example function, u(x), and a more complicated 
function, u(x) (see text for full definitions of u and 0). The derivatives are 
calculated using transform methods and the errors are normalized by the 
rms value of the corresponding function. 
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resolution, the point at which the truncation error falls 
below the “derivative error” occurs at a higher value of N 
than for the original example function, U(X). However, once 
the number of modes is sufficient, the two error curves are 
very close. One should note that, since both example func- 
tions possess the same singularity, it is not surprising that 
the error curves are asymptotically the same. Changing the 
character of the singularity in one of the two example func- 
tions separates the two curves. In fact, either moving the 
location of the singularity closer to x = - 1, or increasing its 
strength, makes the errors worse. Thus, the growth of the 
derivative error defines a lower bound on the accuracy of 
the computed derivative, independent of the number of 
modes required to resolve the function. In the remainder 
of the discussion, we shall concentrate solely on the simpler 
function (Eq. (12)) so that we may compare results over a 
wide range of N. 

3. SOURCES OF ERROR 

Having determined the nature of the errors in computing 
derivatives, we now address the issue of their source. For 
this purpose, we shall mainly restrict our discussion to the 
errors observed in computing the first derivative. 

Evaluation of each derivative requires two FFTs: one to 
obtain the Chebyshev coefficients ak of U(X) and another to 
recover the derivative from the coefficients bk. The errors 
associated with the transform operations alone were 
assessed by reconstructing G(x) in physical space from the 
numerically calculated ak. That is, we calculate coefficients 
ak from U(X) by Chebyshev transform and immediately per- 
form the inverse transform to obtain z?(x). The two lower 
lines in Fig. 1 show that the FFT contributes an error com- 
parable with the machine precision. (Machine precision is 
the smallest number, 6, such that 1 + 6 can be distinguished 
from 1. For 64-bit floating point arithmetic 6 % 10VL6.) The 
transform error grows slowly with N indicating that, in 
addition to the introduction of O(6) error by the arithmetic 
operations of the transforms (which is independent of N), 
the error is also magnified by the number of operations 
during the transform back to physical space. To quantify this 
more precisly, the magnitude of the error in the coefficients 
was artificially raised by adding random noise, uniformly 
distributed between k lo- lo, to the ak, performing the 
inverse transform and computing the L, and L, errors. In 

this case, it was found that both the L, and L, errors grew 
approximately like the square root of N. In a subsequent 
test the noise was distributed between 0 and 10 ~ lo in which 
case the L, error was found to grow linearly with N. Linear 

growth was also found for noise introduced such that the 
random numbers added to adjacent coefficients had 
opposite signs (note that the recursion relation (9) links 
every other coefficient not adjacent coefficients). Since the 

transform error in Fig. 1 is also observed to grow 
approximately like N li2, we can conclude that the roundoff 
error in the transforms themselves has random sign. Clearly, 
the errors apparent in the derivatives arise from the process 
of numerical differentiation, and not solely from the FFT. 

Figure 4 shows the errors associated with the first 
derivative of the example function for three different 
machine precisions. Three pairs of curves are plotted, 
corresponding to 32-, 64-, and 128-bit floating point 
calculations. (The 128-bit calculations were performed 
using double precision arithmetic on a Cray-YMP.) As 
before, both the L,- and L,-errors are displayed for each 
precision. The most striking feature of this graph is the 
magnitude of the error in single precision. Even for small 
values of N, the error is quite unacceptable, never falling 
below lo-‘, and rising to O(1) by N = 2048. That the dif- 
ferent machine precisions result in different levels of error is 
not an unexpected result, but it does confirm the suspicion 
that these problems originate from roundoff error incurred 
during the computation. We have already determined that 
the error associated with the FFT is not the primary source 
of the errors, which leads us to the conclusion that the error 
is generated in the calculation of the coefficients of u’(x). 

We can examine the error in the calculated coefficients of 
the first derivative by comparing them with those obtained 
directly from the Chebyshev transform of u’. We find that 
the magnitude of the error in the coefficients, ek = 16, - bkl, 
is fairly uniform, independent of both k and the magnitude 
of bk. An odd/even decoupling is also exhibited by the ek, 
reflecting the structure of the recursion formula (Eq. (9)). 
The variation of ek with N is, however, more significant. The 
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FIG. 4. Maximum (solid line) and rms (dotted line) errors for the first 
derivative of the example function, U(X) (Eq. (12)) computed using trans- 
form techniques. Pairs of lines represent 32-, 64, and 128-bit precision 
floating-point calculations. 
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magnitude of ek scales linearly with N, ranging from e, z 
2.5 x 10-l’ for N= 128 up to e,%6 x lo-l3 at N= 2048. 
These magnitudes are O(N6), indicating that the source 
of the ek derives from the magnification by the recursion 
operation of the roundoff error incurred during the 
Chebyshev transform. This is supported by observing the 
form of the recursion relation (Eq. (9)) which includes a ka, 
term. Thus, if there is any roundoff error present in the ci,, 
that error will be multiplied by k during the computation of 
6,. Although it is only the high-frequency coefficients that 
are multiplied by factors of O(N), the tight coupling of the 
b, implied by the recursion relation dictates that any error 
present in a high-frequency coefticient will be transmitted to 
all of the lower-frequency coefficients, thus explaining the 
uniform nature of lekl. 

Having established this, it is quite easy to understand 
how the overall O(N*6) error that is observed in u’ occurs. 
The transform, from physical to Chebyshev space intro- 
duces an O(6) roundoff error into each Chebyshev coef- 
ficient. The process of calculating 6, magnifies this error by 
O(N), which is communicated to each mode by the tight 
interdependence that the Chebyshev coefficients exhibit. To 
make matters worse, the error will always be either of 
uniform or alternating sign due to the odd/even coupling of 
the recursion relation. This removes the possibility of error 
cancellation due to random sign, resulting in an additional 
O(N) error incurred during the backward transform, for an 
overall O(N*6) error in u’. 

To be certain that the particular numerical scheme was 
not the source of the observed problems, several other 
numerical techniques for calculating b, from ak in 
Chebyshev space were investigated. These alternative 
schemes included re-writing the recursion equation in 
various forms so that each of the terms of the equation were 
of equal magnitude, computing the b, by direct summation 
(Eq. (8)), solving the matrix system defined by the recursion 
equation by a variety of numerical methods (Gaussian 
elimination, LU and SVD decompositions with forward- 
and backward-substitution), and re-formulating the matrix 
system to be diagonally-dominant (see Gottlieb and 
Orszag, p. 120 of [ 11). The results for all of these methods 
were identical to those for the standard recursion procedure. 

3.1. Comparison with Fourier Series 

The conclusion that the coupling between the Chebyshev 
modes contributes to the large magnitude of the errors 
observed in ti’ leads us to consider the relationship between 
the Chebyshev series and the Fourier series. In the latter 
case, it is well known that if a function is represented by a 
Fourier series, 

N 

u(x) = C ukeikx, 
k=O 

(14) 

then the derivative of that function is approximated as 

u’(x) = c bkeik.‘, (15) 
k=O 

in which b, = ika,. Unlike the Chebyshev series, each coef- 
ficient is calculated independently and does not depend on 
the value of any other coefficient. Therefore, errors that 
accumulate in an individual mode are not transmitted to 
any other mode. Following the steps outlined above in 
tracing the growth of errors, we quickly see that if a uniform 
roundoff error O(6) is introduced into uk by the forward 
Fourier transform, then that error will be magnified by a 
factor of O(N) at the highest frequencies, but the factor 
decreases as k decreases. Due to the independence of the 
Fourier modes, the error in Jk will not be uniform for all k 
and, since the high-frequency modes generally contain less 
energy than the low-frequency modes, the larger errors 
incurred at the high-k will be less detrimental to the overall 
accuracy of ti’. 

In order to compare the Fourier with the Chebyshev 
series, a calculation was performed in which the derivatives 
of an example function were computed using a Fourier 
series approximation. Since periodicity must be enforced, a 
different example function was used, 

u(x) = e-d- x0)2, XE C-L 11, (16) 

where x0 is a small offset, chosen so that the function is 
not symmetric about x = 0, while (T is chosen so that the 
function is sufficiently close to zero at the edges of the 
boundary. Here, x0 = 0.1 and (T = 10.0. 

The results of this calculation are summarized in Fig. 5. 
This figure, like Fig. 1, shows both the maximum error, E,, 
and the root-mean-square error, E,, for the first and second 
derivatives, together with the error associated with the 
Fourier transform alone. When compared with Fig. 1, it is 
clear that, while the errors do grow as N increases, they are 
considerably smaller than those associated with the 
Chebyshev series. These errors grow slightly faster than 
linearly with N (rather than quadratically), confirming the 
above analysis. This calculation was repeated with more 
complicated functions, and it was found that, as was the 
case for the Chebyshev errors, this behavior is independent 
of the example function used. 

3.2. Spatial Characteristics 

An alternative approach in analyzing the source of the 
errors in computing the derivatives of a function 
approximated by a Chebyshev series is to investigate the 
spatial distribution of the error. For this, we restrict our- 
selves to the N= 1024 case, and only remark that the results 
presented here apply for all N within the range tested 
(N < 4096). 
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FIG. 5. Maximum (solid line) and rms (dotted line) errors for the first 
and second derivatives of the example function, u(x) = exp( -u(x + x0)‘), 
approximated using a Fourier series. The derivatives are calculated using 
transform techniques. The lower two curves represent the errors from the 
transform operations only. 

Figure 6 shows the spatial distribution of the error, 
defined as 

E(x) = Id(x) - ti’(x)l, (17) 

plotted versus (x + 1) on logarithmic axes so as to allow 
detailed examination of the behavior near one of the bound- 
aries. Two features deserve comment here. The first observa- 
tion is that the distribution of E(x) is by no means uniform 
throughout the domain. The error is somewhat larger on 
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FIG. 6. Spatial distribution of the error in the first derivative 
calculated with Chebyshev polynomials. N = 1024. The error is plotted vs 
x + 1 and in logarithmic coordinates to emphasize the (1 - .x’))“~ 
behavior near the boundary. 

the left side of the domain, corresponding to the region 
where U’ becomes large (due to the (x + 1.1)3’2 term in the 
denominator of the example function). 

The second comment concerns the accuracy of c’(x) near 
the boundaries. It is clear that the approximation to U’ by zi’ 
is worst near the boundaries of the domain, xx + 1. As 
Fig. 6 indicates, the error rises dramatically near the bound- 
ary, gaining two orders of magnitude over the error in the 
interior of the domain. The behavior, as x + 1 approaches 0 
is well approximated by a line with slope - 4, implying that 
E cc (1 -x*)-l’2 as x + - 1. The large spike as x + 1 + 2 
corresponds to similar behavior at the right edge of the 
domain. This is somewhat counter-intuitive given that the 
Chebyshev polynomials are generally regarded to have 
maximum accuracy near the boundaries [S]. However, 
while the representation of a function by a Chebyshev series 
may be most accurate near x = f 1, these results indicate 
that the derivatives computed from a Chebyshev series are 
least accurate at the edges of the domain. 

This dramatic growth of E(x) in thin regions near the 
boundaries explains the marked difference in Fig. 1 between 
the L, error, which is determined by the error near the 
boundaries, and the L, error, which is an average over the 
whole domain. However, it is also a somewhat disturbing 
result. The boundary regions are often the regions of the 
problem in which accuracy is most crucial (wall bounded 
turbulent flows, for example) and in many computations, 
Chebyshev polynomials are used in large part because of the 
ease with which boundary conditions can be enforced, and 
also because the Chebyshev approximation of functions is 
generally most accurate near the boundaries [S]. The 
observation that derivatives computed from Chebyshev 
approximations are least accurate in precisely these areas is 
a disconcerting discovery. 

3.3. Weighted Sine Transform 

The observed spatial characteristics and the contrasts 
with Fourier expansions are unified by writing the 
Chebyshev transform as a weighted sine transform. The 
Chebyshev series may be written 

u(x)= 2 ak cos(kt), (18) 
k=O 

in which x and 4 are related by 

x = cos( <), 5 E co, nl. (19) 

By taking the derivative of this expression with respect to x, 
one obtains the following expression for u’(x): 

N kak sin(kg) 
u’(x)= 1 

k=O sin(<) . (20) 
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The denominator is independent of k and may be taken out- expanding the equation for the second derivative, (24), we 
side the summation and re-written in terms of x, yielding obtain expressions for U” at x = f 1 (r = 0, rc): 

1 
u’(x) = (1 -x2)1/2 k=O c ka, sin(k5). (21) 

When written in this form, we see that the Chebyshev 
derivative may be expressed as a weighted sine transform 
whose coefficients are related to the original function’s 
Chebyshev coefficients by Ak = ka,. This formulation has 
the property that we desired from the Fourier series, namely 
that the coefficients 6, are not coupled to each other. Thus, 
only the high-frequency modes will suffer from the O(N) 
magnification of the roundoff error while the low-frequency 
modes should retain their accuracy (within the limits of 6). 
The weighting function, w(x) = (1 -x2)-1/2 is just the 
familiar Chebyshev weighting function. At x = + 1, w(x) is 
singular and so we must expand the full sine series 
(Eq. (20)) for c = 0, yielding simple expressions for the 
values of ti’(1) and ti’( - 1): 

and 

a’(l)= g k2a, 
k=O 

G’(-l)= z (-l)kk2ak 
k=O 

(22a) 

(22b) 

The form of the second derivative may be derived by 
utilizing the Chebyshev differential equation: 

Tk=O. 

From this we obtain 

(23) 

u”(x)= f akTL 
k=O 

(24) 

In this instance, the equation for U” is slightly more 
complicated than for the first derivative, but the overall 
form remains the same. Here, there are both Fourier sine 
and cosine transforms, each with their respective weight 
functions, both of which are singular at the boundaries. By 

AJ k2(k2-1) 
z/(l)= 1 3 ak 

k=O 
Pa) 

and 

k=O 

This procedure was employed in the computation of u’(x) 
and u”(x), but the results were no different from those 
shown in Fig. 1. The errors in U’ and U” grew in exactly 
the same manner as for the standard recursion procedure, 
yielding no improvement. However, the effort was not com- 
pletely wasted, as Fig. 7 indicates. In this figure, the spatial 
distribution of the unweightederror for the first derivative is 
plotted in a similar fashion to Fig. 6. Here, the unweighted 
error is defined as 

E”“(X) = E- i ka, sin(k (26) 
k=O 

In this form, there are no singular weight functions to cause 
concern, and the Chebyshev derivative has the form of 
a pure sine transform, with all the advantages of the inde- 
pendence of modes that the Fourier series enjoy. 

Figure 7 shows E,,(x) plotted against x + 1 and in 
logarithmic coordinates to allow detailed examination of 
the region near the boundary. Comparing Figs. 7 and 6, one 
sees that in the interior, from x = -0.6 to x = +0.6, the 
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FIG. 7. Spatial distribution of the unweighted first derivative, 
calculated using the Fourier sine transform technique. N = 1024. The error 
is plotted against x + 1 and in logarithmic coordinates so as to emphasize 
the behavior near the boundary. 
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errors appear identical and both the magnitude and the 
locations of the extrema correspond closely. However, 
closer to the edges of the domain, the two graphs diverge, 
and where we previously saw E(x) increase by two orders of 
magnitude, we now see a slight drop in the magnitude of the 
error, E,,(x). As before, the magnitude of the error is larger 
towards x = - 1, but this may be attributed to the rise in the 
magnitude of u’(x) in this region. 

It should be commented that if one calculates the global 
errors, E, and E,, for the unweighted sine transform 
(comparing the computed results with u’(x)/w(x) and 
u”(x)/w~(x)), one finds that they grow linearly with N, as 
was found to be the case with the Fourier series (Fig. 5). 
Given the structure of the Chebyshev derivative in this 
form, this result is not unexpected. 

In Fig. 1, we noted that the maximum error, E,, grows 
according to N’, while the rms error, E,, grows somewhat 
more slowly. This observation may now be explained in 
light of this discussion. The interior of the domain follows 
the O(N6) growth exhibited by the Fourier series. However, 
in thin regions near each boundary, where w(x) becomes 
singular, the error becomes large and increases further as N 
increases and the collocation points (whose spacing 
decreases like l/N2 near x = f 1) approach the singular 
points in w. Thus while the maximum error increases 
quadratically, the L, error increases more slowly since 
it also incorporates the interior error. A final comment 
concerns the earlier observation that the error at the 
boundary (Fig. 6) grows approximately as (1 - x2)) ‘j2. 
This behavior now is fully accounted for by the form of the 
weight function, w(x). 

3.4. Alleviation of the Errors 

Given that we now understand that the most dangerous 
portion of the errors associated with the computation of the 
derivative is located at the boundaries we can apply the 
following scheme in an attempt to alleviate the problem. If 
we write our example function, u(x), as 

1+x 
u(x) = - 

l-x 
2 

u(l)+- 2 u(--l)+(l--7 g(x) (27) 

we can express the first derivative as 

u’(x) = 
U(l)-U(-1) 

2 
+ (1 -x2) g’(x) - 2xg(x). (28) 

If we compute u’ in this fashion, using standard recursion 
techniques to find g’, we can immediately see that the most 
serious errors accrued, namely, the errors in g’(x) near the 
boundaries, will be damped by the weighting function and 
we might therefore expect to see some improvement in the 

fidelity of the computed derivative. The second derivative 
may be found by either applying this procedure iteratively, 
or by differentiating twice the expression for u(x), (27), 
yielding an expression for the second derivative directly: 

u”(X) = (1 -x2) g”(x) - 4xg’(x) - 2g(x). (29) 

This formulation is closely related to one recently 
proposed by Heinrichs [6] who showed rigorously that this 
form of pre-conditioning can be used to achieve an 0(N2) 
condition number for second order Dirichlet problems 
instead of the usual O(N4). 

One last problem remains to be solved. In computing 
g(x), we cannot directly evaluate the boundary terms at 
x = rfr 1, since the weighting function is singular at those 
points. Two options present themselves. If we know the 
value of u’ at the boundaries (from boundary conditions or 
some other means) then we can find g( f 1) by application 
of L’Hopital’s rule: 

g(fl)= *; 
( 

“(I)-2~(-‘)-u’(*l) 
> 

(30) 

If, however, the boundary conditions are not known, we can 
evaluate g( + 1) in the following manner: 

Since u(x) is approximated by a polynomial of order N, 
we know that g(x) must be a polynomial of order N- 2. 
Using the orthogonality of Chebyshev polynomials, we can 
therefore write 

kio g(xJ TN- l(Xk) = 0 VW 

and 

kc, g(x!J TN(Xk) = 0, (31b) 

where xk are the N+ 1 collocation points for the functions 
u(x) and g(x); g( f 1) can readily be found from these condi- 
tions. 

Figure 8 shows the L, and L, errors for the first 
and second derivatives computed using this technique 
(computing g( f 1) using Eq. (3 1)). For the first derivative 
the root-mean-square error is actually slightly larger than 
for the case of the recursion equation. However, the 
maximum error has decreased somewhat, indicating that 
the errors are more uniformly distributed over the domain 
and that the growth of errors near the boundaries has been 
attenuated. Inspection of the spatial distribution of the 
errors confirms this. The results for the second derivative 
also show some improvement in the magnitude of both the 
rms error and the maximum error. 
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FIG. 8. Maximum (solid line) and rms (dotted line) errors for the first 
and second derivatives of the example function, u(x), calculated using the 
weighting technique: u(x) = (1 -x2) g(x). 

It is interesting to note that if the values of u’( &- 1) are 
known, and L’Hopital’s rule is used to find g( + l), then the 
L, error remains the same as in Fig. 8, but the L, error rises 
to almost exactly the same level, indicating an almost com- 
pletely uniform distribution of error within the domain. For 
the second derivative, the two curves for E, and E2 are 
identical, growing somewhat slower than N4. 

4. MATRIX TECHNIQUES 

Transformations into Chebyshev space and explicit deter- 
mination of the Chebyshev coefficients can be avoided 
altogether by using a matrix multiplication formulation. If 
II = { u(xi)}, is the vector consisting of u(x) evaluated at the 
N + 1 collocation points and u’ = { a’(~~)} consists of the 
derivative at the collocation points, then the collocation 
derivative matrix, D$,!‘, is the matrix mapping u H u’. For 
the Gauss-Lobatto collocation points, we have [7, 51 

i 

ci(-lji+j 
-- 
c, xi-xj ’ 

i # j, 

-XI 

2(1 -xj)” 
l<i=j<N-1, 

(D(l))..= N r/ 2N2+1 
(32) 

6 ’ 
i=j=(), 

2N2+1 
--3 6 

i= j=N, 

where cj = 2 if j = 0, N, and is equal to 1 otherwise. 
Two matrix multiplications yield u”, the vector con- 

taining the second derivative evaluated at the collocation 

points. More efficiently, the matrix D$) maps u H u”. Peyret 
[S] gives explicit formulae for the entries in D(Nz). 

Matrix techniques, though asymptotically slower than 
the recursion technique, requiring O(N’) floating point 
operations, are often faster for small problems. Unlike 
transform methods, matrix multiplication is amenable to 
vectorization and the advent of parallel computation 
ensures their continued use. In this section we examine the 
errors incurred using matrix multiplication to calculate 
derivatives. 

Unfortunately, the situation here is rather worse than 
with the recursion method. Figure 9 gives the results for 
our usual example function (Eq. (12)). As is evident from 
the graph, the L,-error in the first derivative grows as 
N4. The second derivative was computed using D(N2), 
although the results using Dg’D!$’ were almost identical. 
However, the L, error for u” is observed to grow as N6 
(compared with N4 for the recursion technique). 

In a similar fashion to the recursion results, the L, -errors 
grow slightly more slowly than the maximum errors which 
reflects the spatial distribution of the error, which like the 
recursion error, is maximum at the domain boundaries, 
x = + 1. However, in contrast to the transform method, 
E(x) = [u’(x) - a’(x)/ behaves like l/( 1 - 1x1) as x --+ f 1. 

We would expect that the matrix methods should yield 
results no different from those of the transform techniques 
already discussed, namely O(N*) errors in u’. In determin- 
ing the origins of this additional error, we shall concentrate 
primarily on D, . (‘I Standard error analysis of matrix multi- 
plication [9] suggests that an error of 6 times the 
magnitude of the largest eigenvalue of D!.,!’ may be incurred 
in accumulating such a product. Since the eigenvalues of 

Number of modes 

FIG. 9. Maximum (solid line) and rms (dotted line) errors for the tirst 
and second derivatives calculated using matrix multiplication techniques. 
The second derivative is calculated directly from u by applying D(Nz’, 
although the use of (OS))’ yield almost identical results for u”. 
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0;’ are only O(N’) [3] the usual matrix multiplication 
error is insufficient to account for the O(N46) observed 
error. Confirmation of this is found by performing the 
accumulation of the matrix multiplication in double 
precision and the remainder in single precision: in this case 
E, still grows as N4. 

The ill-conditioned nature of 0;’ is widely known (see 
Orszag, [lo]). Figure 10 shows the magnitudes of the 
elements for N= 64. Sizes are indicated by a logarithmic 
grey scale; the smallest elements (O( 1)) are shown as white, 
and the largest elements (O(N*)) are shown as black. This 
picture does not display the signs of the elements: alternate 
elements have opposite signs. The matrix is clearly not 
diagonally dominant; elements on the diagonal are small, 
whereas the off-diagonal elements are large. The largest 
elements are concentrated in the top-left and bottom-right 
corners and approximations to the derivative at collocation 
points close to the boundary are formed by the sums and 
differences of these very large coefficients. Since accumula- 
tion error has been eliminated as the cause of the large 
errors in the computed derivative, we are led to examine the 
calculation of the matrix elements themselves. 

Figure 11 indicates the distribution of the errors in Dkf, 
and is representative of all those we have examined 
(NG4096). The error is calculated by subtracting (DC)), 
computed in double precision (6 E 10 -16, or GZ 15 signili- 
cant figures) from (D!$')v computed to 35 decimal places 
(using an arbitrary precision arithmetic program). This is 

FIG. 10. Magnitude of the elements of DC’, N= 64, plotted on a 
logarithmic grey scale. The top left comer of the figure represents (Dg& 
while the lower right corner represents (Dg))NN. White represents O(1) 
elements, while black indicates O(N’) elements. 

FIG. 11. Magnitude of errors in the elements of O$,‘, N = 64, plotted 
on a logarithmic grey scale. The top left corner of the figure represents 
(Di)), while the lower right corner represents (Dg’),,. White represents 
O(6) errors, while black indicates O(N“6) errors. 

shown on a logarithmic grey scale with white representing 
machine precision and black indicating the maximum error. 
The distribution of errors evidently follows the distribution 
of the I(Dg')ijl and the maximum error occurs in (Dg)),,, 
and (D!$))N,N--l. Numerical calculation shows that the 
maximum errors grow like N4, confirming the following 
analysis of the computation of the “most dangerous” 
element, (Do)),, . 

In computing (DE)),,, we need to compute the values of 
two collocation points x,, and x1. The first collocation 
point, x,,, is the boundary point and is therefore calculated 
exactly, even with finite precision arithmetic. A roundoff 
error, 6, however, is incurred in the calculation of x, = 
cos( l/N), so for large N, 

i,=l-j!$+6+O(N-4,62). (33) 

Using this expression, we may expand (DC)),, as a series 
in 6: 

-2 
= 6 + 1/(2N2) (35) 

= -4N2 + O(N46). (36) 

Thus the error in the (Dz))o, grows like N46, dominating 
any N2 inner-product accumulation error. Analysis of 
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(Dg’),, shows that the errors in the “most dangerous” 
diagonal element also grow as N46. 

The “most dangerous” element of the second derivative 
collocation matrix is 

(D$‘h = 
-2(2N2+1)(1-x,)-6 

(l-x,)2 . (37) 

Here too, finite precision calculation of the difference in 
two similar numbers (the first two collocation points) ren- 
ders the calculation imprecise. A similar analysis to that 
presented for D, (I) shows that the error in a computation of 
(D$,?)ol is O(N66), accounting for the behavior exhibited in 
Fig. 9. 

This reasoning is supported by a comparison with the 
corresponding Fourier series problem, as discussed in 
Section 3.1. In this instance, collocation points are evenly 
spaced and the Fourier derivative collocation matrix, 

(-l)i+i 
2 tan(i-j)rc/(N+ 1)’ 

i#j (38) 

i = j, 

does not involve any small quantities, allowing its calcula- 
tion to be accurate to machine precision. Its eigenvalues are 
uniformly distributed along the imaginary axis between 
-inN/2 and ixN/2 and we may therefore expect the errors 
incurred in the Fourier collocation problem to arise 
primarily from the inner-product accumulation stage and to 
be bounded by 7rNS/2. Indeed, making a comparison 
calculation, we find that the errors in the first derivative 
grow like N for the first derivative and N2 for the second 
derivative. 

Clearly, in any computation using collocation matrices, 
this source of error must be avoided, and we must therefore 
find a method for calculating the matrix elements 
accurately. One technique is to pre-calculate the matrix 
using enhanced precision routines, or a computer with the 
necessary additional precision. Although effective, this 
approach is somewhat inconvenient, and an alternative 
method to the direct calculation of the derivative colloca- 
tion matrices is suggested by observing that if uci) is the vec- 
tor consisting of zeros except for a 1 in the ith position, then 
Dg’u”) is the ith column of 0;‘. (The functions u(j) are 
examples of cardinal functions (see Boyd [ 11 I).) The 
collocation matrix may therefore by assembled by suc- 
cessively computing, using the transform-recursion-trans- 
form technique, the derivative of ~4~~) for j = 0, . . . . N. We may 
expect, from the results of Section 3, that errors in elements 
of Dj\f) will be O(N2), much smaller than if they are com- 
puted directly, and will be comparable with the inner- 
product accumulation errors. Indeed, this is found to be the 
case. A test calculation using a collocation matrix computed 
in this manner yielded first-derivative errors that grew 

slightly faster than N2 and second-derivative errors growing 
slightly faster than N4. Note, however, that the results are 
worse than the corresponding calculations using the recur- 
sion technique, because errors now derive both from those 
errors in the matrix elements and also the inner product 
accumulation error. We have not determined the precise 
cause of this slightly more rapid growth, but suggest that an 
additional logarithmic factor may be introduced by the 
FFT during the Chebyshev transforms. 

In addition to taking care in the computation of the 
elements of 0;’ and Dg), one can further reduce the error 
accumulated during the computation of the derivative by 
employing the technique presented by Heinrichs [6] and 
discussed in detail in the previous section with regard to the 
transform techniques. In common with the transform-recur- 
sion techniques, pre-conditioning the original function: 
U(X) = (1 - x2) g(x), results in a more accurate evaluation 
of the derivative because errors near the boundaries are 
suppressed by the (1 - x2) weighting. 

5. CONCLUSIONS 

We have determined that using standard techniques for 
the computation of derivatives of functions approximated 
by Chebyshev polynomials, large errors, deriving from finite 
numerical precision, become apparent as the number of 
polynomials used, N + 1, increases. These errors scale with 
N2 and are primarily located in thin regions near the 
boundaries of the Chebyshev domain at x = + 1. In the 
interior of the domain, the errors grow linearly with N. 
These errors, which define a lower bound on the level of 
accuracy in the computed derivative, are essentially inde- 
pendent of the function being differentiated, depending only 
on the number of Chebyshev modes and the precision of the 
computer being used. 

The source of the error may be viewed in two distinct 
manners: focusing either on the characteristics of the 
Chebyshev coefficients, or on the spatial structure of the 
error. Examining the Chebyshev coefficients, we find that 
the problem is initiated by the introduction of a small 
roundoff error during the transform from physical to 
Chebyshev space. The process of computing the coefficients 
of the derivative magnifies that error by O(N) and finally 
the inverse transform, back to physical space, introduces a 
further magnification by O(N). The magnification of the 
error during the computation of hk is inherent in the 
Chebyshev problem. It is not dependent on how one com- 
putes 6,, but only on there being O(6) errors in the aks 
beforehand. The strong coupling between the Chebyshev 
coefftcients that is characteristic of the Chebyshev differen- 
tiation serves to distribute this large error evenly amongst 
all of the coefficients, from high values of k, down to k = 0. 
This is distinct from the equivalent problem using Fourier 
series, in which case the independence of the Fourier modes 



CHEBYSHEV DERIVATIVES 67 

during the computation of the coefficients of U’ effectively 
isolates the large errors in the high-frequency modes. It is 
this essential distinction that results in O(N) errors when 
using Fourier series but O(N*) errors when using 
Chebyshev series. 

Matrix methods of computing the derivatives yield identi- 
cal errors. From this perspective, we see that the errors 
result from the O(N*) eigenvalue of the D$’ differentiation 
matrix and are an unavoidable consequence of the tinite- 
precision matrix multiplication. In addition, unless par- 
ticular care is taken, the elements of 0;’ can themselves 
contain 0(N46) errors, resulting in overall errors of O(N46) 
in the computed first derivative and O(N66) in the second 
derivative. 

However, the picture is not all bleak. The problems 
encountered with both transform and matrix methods can 
be somewhat alleviated by pre-conditioning the function to 
be differentiated with a weighting function, (1 -x2) [6]. 
This suppresses the growth of errors at the boundaries 
leading to a more uniform error in the first derivative and a 
reduction in the maximum error. In addition to this tech- 
nique, other guidelines should be followed in order to mini- 
mize the growth of these errors. First, the computational 
procedure should be constructed so as to minimize the num- 
ber of derivatives that must be computed. One way in which 
this can be achieved is to write the equations in integral 
form, thus replacing numerical differentiation with numeri- 
cal integration which is often less prone to problems of this 
nature. This approach has been widely used in the solution 
of ordinary differential equations (see, for example, Fox and 
Parker [ 121, Zebib [ 131, and Greengard [4]). Boyd [ 111 
also gives a comprehensive discussion of these approaches. 
An alternative way to minimize these errors is to avoid large 
values of N by domain decomposition or spectral-element 
methods (for example, Korczak and Patera [ 141). 

We must emphasize that these roundoff error effects are 
not necessarily problems in the solution of differential equa- 
tions, but in the computation of the derivatives of functions. 
Restated, the sensitivity of a system of equations to roundoff 
error is not at all the same as the demonstrated ill-condi- 
tioned nature of the numerical differentiation process. 
Indeed the accuracy of solutions to linear differential equa- 
tions (by means of the Tau method, for example) does not 
appear to suffer as N increases. However, this will not be 
true for nonlinear systems, in which case the equation is 
often solved by advancing in time using a marching scheme 
(e.g., Runge-Kutta), forced by a right-hand side assembled 
using the solution and its spatial derivatives at the previous 
time level. In view of the results presented here, one can see 
that for large N, the errors that arise in the derivatives 
can distort the forcing term, which may render the overall 
solution inaccurate. 

The effect of these errors will not necessarily destroy the 
physical character of a numerical solution over a long 

integration time. However, it will introduce spurious 
“noise” into the solution which may force unintended or 
undesirable behavior in the system being solved. For exam- 
ple, when solving a system possessing unstable modes, the 
high level of background numerical noise may artificially 
trigger those instabilities (a numerical analogue to high 
levels of free-stream turbulence in a wind tunnel). 

One final comment is that the over-resolution of a 
problem can lead to disastrous results. It is often the prac- 
tice to allow more modes than are necessary in order to “be 
safe” regarding the spatial resolution. This can be dangerous 
since the use of too many modes can only aggravate this 
problem. In checking grid dependence, one should be aware 
that, although truncation error decreases as N grows, the 
effect of roundoff error increases at the same time. For some 
value of N, one reaches a point of diminishing returns in 
which increased resolution will decrease rather than 
increase the accuracy of the computation. Thus, for com- 
plicated problems in which N is reasonably large, the 
smallest number of modes necessary to sufficiently resolve 
the problem should be used. 
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